∞ SUMMER MATH SKILLS PLAN

Florida B.E.S.T. Standards for Math are broken down into four larger categories, with multiple standards for each category. Use this checklist to work on skills associated with each standard on IXL.com. Students can log in using their N\# and SLApin.

For each skill, work until to a SmartScore of at least 80 and record the final score on the checklist below. Each completed category will earn a casual day at the beginning of next school year!

NUMBER SENSE AND OPERATIONS AND PROBABILITY

STANDARD

MA.8.NSO.I. Extend previous understanding of rational numbers to define irrational numbers within the real number system. Locate an approximate value of a numerical expression involving irrational numbers on a number line.
MA.8.NSO.I. 2 Plot, order and compare rational and irrational numbers, represented in various forms.

MA.8.NSO.I. 3 Extend previous understanding of the Laws of Exponents to include integer exponents. Apply the Laws of Exponents to evaluate numerical expressions and generate equivalent numerical expressions, limited to integer exponents and rational number bases, with procedural fluency.

IXL SKILLS

F.2: Identify rational and irrational numbers
F.4: Irrational numbers on number lines
C.4: Powers with negative bases
C.7: Evaluate powers with negative powers
C.9: Multiply powers: integer bases
C.IO: Divide powers: integer bases
C.12: Power of a power: integer bases
C.I3: Evaluate expressions using properties of exponents
D.l: Convert between standard and scientific notation

MA.8.NSO.I. 4 Express numbers in scientific notation to represent and approximate very large or very small quantities. Determine how many times larger or smaller one number is compared to a second number.
MA.8.NSO.I. 5 Add, subtract, multiply and divide numbers expressed in scientific notation with procedural fluency.
MA.8.NSOI.I Solve multi-step mathematical and real-world problems involving the order of operations with rational numbers including exponents and radicals.
D.5: Multiply numbers written in scientific notation
F.5: Checkpoint: Rational and irrational numbers

JJ.6: Compound events: find the number of outcomes

MA.8.DP.2.2 Find the theoretical probability of an event related to a repeated experiment.

MA.8.DP.2.3 Solve real-world problems involving probabilities related to single or repeated experiments, including making predictions based on theoretical probability.

JJ.I: Probability of simple events

ALGEBRAIC REASONING

STANDARD

IXL SKILLS

MA.8.AR.II Apply the Laws of Exponents to generate equivalent algebraic expressions, limited to integer exponents and monomial bases.
C.I6: Multiply powers: variable bases
C.17: Divide powers: variable bases
C.I9: Powers of a power: variable bases

MA.8.AR.2.I Solve multi-step linear M.ll: Solve equations involving like terms equations in one variable, with rational number coefficients. Include equations with variables on both sides.
M.I5: Solve equations with the distributive property
M.I9: Solve multi-step equations: complete the solution
M.I2: Solve equations with variables on both sides
M.20: Find the number of solutions

MA.8.AR.2.2 Solve two-step linear inequalities in one variable and represent solutions algebraically and graphically.

MA.8.AR.2.3 Given an equation in the form of $x 2=p$ and $x 3=q$, where p is a whole number and q is an integer, determine the real solutions.
N.6: Solve two-step inequalities

MA.8.AR.U.I Given a system of two linear equations and a specified set of possible solutions, determine which ordered pairs satisfy the system of linear equations.
E.6: Solve equations using square roots

MA.8.AR.4.3 Given a mathematical or real-world context, solve systems of two linear equations by graphing.

GG.I: Is (x, y) a solution to the system of equations?

GG.2: Solve a system of equations by graphing

LINEAR RELATIONSHIPS, DATA ANALYSIS, AND FUNCTIONS

STANDARD

IXL SKILLS

MA.8.AR.3.2 Given a table, graph or written description of a linear relationship, determine the slope.
Z.I: Find the slope from a graph
Z.2: Find the slope from two points

MA.8.AR.3.3 Given a table, graph or written description of a linear relationship, write an equation in slope-intercept form.

AA.6: Write a linear equation from a slope and y-intercept

AA.7: Write a linear equation from a graph

MA.8.AR.3.4 Given a mathematical or real-world context, graph a two-variable linear equation from a written description, a table or an equation in slope-intercept form.

AA.6: Graph a line from an equation in
slope-intercept form

MA.8.F.I. Given a set of ordered pairs, a table, a graph or mapping diagram, determine whether the relationship is a function. Identify the domain and range of the relation.

BB.I: Identify Functions
BB.6: Domain and range of functions

MA.8.FI. 2 Given a function defined by a graph or an equation, determine whether the function is a linear function. Given an input-output table, determine whether it could represent a linear function.

DD.I: Identify linear and nonlinear functions: graphs
and equations

MA.8.FI. 3 Analyze a real-world written description or graphical representation of a functional relationship between two quantities and identify where the function is increasing, decreasing or constant.
CC.4: Interpret points on the graph of a linear functions

BB.4: Find values using function graphs

MA.8.DP.I.I Given a set of real-world bivariate numerical data, construct a scatter plot or a line graph as appropriate for the context.
II.4: Create scatter plots

MA.8.DPI. 2 Given a scatter plot within a real-world context, describe patterns of association.
II.5: Identify trends with scatter plots

MA.8.DPI. 3 Given a scatter plot with a linear association, informally fit a straight line.
II.8: Identify lines of best fit

GEOMETRIC REASONING

STANDARD

MA.8.GR.I.I Apply the Pythagorean Theorem to solve mathematical and real-world problems involving unknown side lengths in right triangles.
T.I: Pythagorean theorem: find the length of
the hypotenuse
T.2: Pythagorean theorem: find the missing leg length
T.4: Pythagorean theorem: find the perimeter

Abstract

MA.8.GRI. 2 Apply the Pythagorean Theorem to solve mathematical and real-world problems involving the distance between two points in a coordinate plane.

MA.8.GRII 3 Use the Triangle Inequality Theorem to determine if a triangle can be formed from a given set of sides. Use the Pythagorean Theorem to determine if a right triangle can be formed from a given set of sides.
0.4: Find the distance between two points

MA.8.GRI.I Solve mathematical problems involving the relationships between supplementary, complementary, vertical or adjacent angles.
T.6: Converse of Pythagorean theorem: is it a right triangle?

MA.8.GR.I. 5 Solve problems involving the relationships of interior and exterior angles of a triangle.
P.:: Identify complementary, supplementary, vertical, adjacent, and congruent angles
P.2: Find the measures of complementary, supplementary, vertical, and adjacent angles

MA.8.GRI. 6 Develop and use formulas for the sums of the interior angles of regular polygons by decomposing them into triangles.
Q.7: Find the missing angles in triangles
Q.I2: Exterior Angle Theorem
Q.I3: Interior angles of polygons

